Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(1): 25, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267795

RESUMO

Combination therapies have been studied by many researchers using different techniques and methods to solve some solid drug problems and improve more effective treatments for humans and animals. One of the more significant findings to emerge from this study is that the combination of pharmaceutical agents by using pharmaceutical deep eutectic solvents (PDESs) in order to produce dual action drugs and reduce the drug resistance. The major objective of this study was to investigate the dual functionality of drugs (antioxidant and antibacterial activity) via the principle of PDESs. The produced PDESs were characterized via different techniques, namely differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and UV-Vis spectrophotometry. We herein tested a panel of novel liquid formulations of didecyldimethylammonium bromide (DDMAB) against a selection of pathogenic bacteria, classifying their spectrum of activity against Gram-positive and Gram-negative bacteria. The current study found that the PDESs can be used to produce drugs with dual functionalities. The produced PDES from (ascorbic acid: DDMAB) exhibits stronger antibacterial activity against Gram-positive Staphyloccocus aureus and Staphyloccocus epidermidis than gram negatives. One of the most interesting PDESs studied in this research was that of DDMAB and ascorbic acid. This forms a eutectic which is far from the solid drugs issues and shows dual functionality like antibacterial and antioxidant activity. This study has found that there is a correlation between the molecular docking study and the biological activities of the combined drugs.


Assuntos
Antioxidantes , Solventes Eutéticos Profundos , Compostos de Amônio Quaternário , Animais , Humanos , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Composição de Medicamentos , Simulação de Acoplamento Molecular , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Ácido Ascórbico , Preparações Farmacêuticas
2.
Mikrochim Acta ; 191(1): 62, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157071

RESUMO

Synthesis of dual-state dual emitting metal-organic frameworks (DSDE-MOFs) is uncommon and challenging. Additionally, DSDE-MOFs can fulfil the expanding need for on-site detection due to their stability and self-reference for a variety of non-analyte variables. In the present work, a novel intrinsic DSDE of chemically engineered bi-ligand Eu-based MOF (UoZ-1) was designed. The prepared UoZ-1 spherical particles were small-sized around 10-12 nm and displayed blue (425 nm) and red fluorescence (620 nm) at both states, dispersed in liquid and in solid state, when excited at 250 nm. A ratiometry platform was developed since the red emission was quenched by the addition of folic acid and the blue emission was almost remained unaffected. In the fluorometric ratiometric-mode, a dynamic linear range was recorded from 10 to 200 µM with LOD about 0.4 µM. Visual-based detection with assistance of smartphone was developed for quantification based on RGB analysis using Color Grab App. In the visual-mode, LOD as small as 2.3 µM was recorded. By utilizing the intrinsic dual-emitting UoZ-1, highly stable, recyclable, sensitive, and selective on-site visual detection of folic acid can be achieved. UoZ-1, a DSDE-MOF with no encapsulation or functionalization requirements, exhibits great potential for diverse applications.

3.
ACS Omega ; 7(38): 34326-34340, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188283

RESUMO

Polypyrrole (Ppy)-modified graphene oxide (GO) electrodes were synthesized for the first time in a choline chloride-phenol-based deep eutectic solvent at various temperatures via electrochemical methods without the addition of any inorganic or organic catalysts. The surface morphologies and structures of the modified films were assessed via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The electrochemical properties and stability of the modified electrodes were investigated via cyclic voltammetry and impedance spectroscopy at various temperatures and scan rates. The results showed that the specific capacitance of the nanocomposites decreased with increasing scan rate during cycling. Additionally, the specific capacitances of the pure Ppy and Ppy/GO films increased with increasing temperature of the electrolyte (monomer-free), attributed to the reduction in viscosity at elevated temperature. The specific capacitances at 5 mV s-1 were found to be 1071.78 and 594.79 F g-1 for Ppy/GO (20 wt %) at 50 and 25 °C, respectively. It was also observed that the resistance in the cell decreased with increasing electrolyte temperature. Ppy/GO at 50 mV s-1 was found to have the highest capacitance retention of 85% after 2000 cycles, showing better cycling stability than the pure Ppy film. Herein, the incorporation of GO in the Ppy matrix led to improved specific capacitance and cyclic stability, suggesting that Ppy/GO could represent a promising electrode material for supercapacitor applications.

4.
Pharm Res ; 39(10): 2367-2377, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35739370

RESUMO

The field of Ionic liquids (ILs) and deep eutectic solvents (DESs) is continuously expanding due to their exceptional unique properties and highly tunable nature, which finds applications in broad areas of modern science. Considering numerous possible IL and DES combinations prepared with active pharmaceutical ingredients (APIs), they find applications in pharmaceutical sciences. They can also serve as potential components of drug formulations and hence they have drawn the attention of formulation scientists. Herein, the concept of pharmaceutical ILs and DESs are discussed briefly. The possible applications of these solvent systems for slow drug delivery including nanoscale drug delivery are discussed citing various examples from the published literature. Although the ILs and DESs are found to be suitable for various drug delivery applications but still none of the slow drug delivery vehicles based on these solvents is in practical use. The data relating to long-term toxicity upon administration in the human body followed by various safety evaluations, clinical trials, etc. are pending for such new drug delivery systems. However, proof of concept studies done on the retention of biological activities in the ionic form is quite encouraging and such studies indicate the possibility of application of such new systems in the development of biomedical research and related industries in near future.


Assuntos
Líquidos Iônicos , Solventes Eutéticos Profundos , Humanos , Preparações Farmacêuticas , Solventes
5.
Drug Deliv Transl Res ; 12(5): 1187-1194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33966177

RESUMO

Deep eutectic solvent (DES) is a class of ionic liquids, consisting of a mixture generally formed by combining hydrogen bond donors (HBDs) such as alcohols, amides and carboxylic acids with various quaternary ammonium salts. The decrease in melting points of the constituents is due to the charge delocalization during formation of hydrogen bonding between the hydrogen bond acceptor with the hydrogen bond donor. This can be considered one of the main reasons for increasing solubility and absorption of DESs. Most active pharmaceutical ingredients (APIs) have polar functional groups containing amide, carboxylic acid, alcohol or quaternary ammonium groups. These tend to increase the melting point of the compounds, but they can be used to form eutectic mixtures. While this concept has previously used, the combination of quaternary ammonium salts with amides, carboxylic acids and alcohols can result in large depressions of freezing points and so-called deep eutectic solvents are formed. DESs mix readily with water and so could increase the uptake of APIs. In this study, pharmaceutical deep eutectic solvents (PDESs) are formulated from 3 APIs: imipramine HCl, ascorbic acid and catechol. These PDESs were used to plasticise gelatine. It is shown that the materials formed can be used to increase the rate of API uptake via both oral and transdermal delivery modes. Thus, the concentration of the PDESs in solution reaches the maximum before the pure drugs. Particularly for catechol, after 1 s, the dissolution of the PDESs was more than twice that of the pure drug. Moreover, the transdermal delivery mode uptake of the PDES based on imipramine HCl from the patch after 15 min was found to be 65% compared with just imipramine HCl which released only 20%.


Assuntos
Compostos de Amônio , Gelatina , Álcoois , Amidas , Ácidos Carboxílicos/química , Preparações de Ação Retardada , Imipramina , Compostos de Amônio Quaternário/química , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...